
N91 -20812

An ARCHITECTURE FOR DESIGNING
FUZZY LOGIC CONTROLLERS USING

NEURAL NETWORKS

Hamid R. Berenji

Sterling Federal Systems

Artificial Intelligence Research Branch

NASA Ames Research Center

MS: 244-17, Moffett Field, CA 94035

e-mail: berenji@pluto.arc.nasa.gov

Abstract

In this paper, we describe an architecture for designing fuzzy con-

trollers through a hierarchical process of control rule acquisition and

by using special classes of neural network learning techniques. Hier-

archical development of the fuzzy control rules is a useful technique
which has been used earlier in designing a fuzzy controller with in-

teractive goals [5]. Also, we introduce a new method for learning

to refine a fuzzy logic controller. A reinforcement learning technique
is used in conjunction with a multi-layer neural network model of a

fuzzy controller. The model learns by updating its prediction of the

plant's behavior and is related to the Sutton's Temporal Difference

(TD) method. The method proposed here has the advantage of using

the control knowledge of an experienced operator and fine-tuning it

through the process oflearnin 8. The approach is applied to a cart-pole
balancing system.

1 Introduction

Fuzzy logic controllers have recently experienced a huge commercial success

[12,6]. These controllers are usually developed based on the knowledge of

human expert operators[4]. However, starting with the Self Organizing Con-

trol (SOC) techniques of Mamdani and his students (e.g., [9]), the need for

research in developing fuzzy logic controllers which can learn from experience

has been realized (e.g., [8]). The learning task may include the identification

of the main control parameters (i.e., related to the system identification in

conventional and modern control theory) or development and fine-tuning of

the fuzzy memberships used in the control rules. In thi_ paper, we concen-

trate on the latter learning task and develop a model which can learn to

adjust the fuzzy memberships of the linguistic labels.

The organization of this paper is as follows. We first discuss the general

model of our NeuroFuzzy Controller (NFC) and then we apply this model to

the control of a cast-pole balancing system. Finally, we compare this model

with other related research works such as the credit assignment in artificial

intelligence [10], Basto et. al.'s AHC model [3], and Lee and Berenji's single

layer model [8].

2 NFC: A Model for Intelligent Control

Figure 1 illustrates the general model of our intelligent controller. The two

main elements in this model are the Action-state Evaluation Network (AEN),

which acts as a critic and provides advice to the main controller, and the

Action Selection Network (ASN) which includes a fuzzy controller.

2.1 Action-state Evaluation Network (AEN)

The only information received by the AEN is the state of the plant in terms

of its state variables and whether a failure has occurred or not. Figure 2

illustrates the structure of an evaluation network including mh hidden units

and n input units from the environment (i.e., Zo, zl,..., z,,). The triangles

represent the calculation-center [1] of the units where the updating equations

Input

State

state Evaluation (Critic)

- Two layers neural net

- Learns by updating the
prediction of failures

¢-

°.
Ii-

_' Internal reinforcement

State

ASN 'V

Action Determination (two layers neural net)

Input Layer Hidden Layer

I Fuzzy Encoder _ Rule Base
(Fuzzifier)

Output layer

__tFuzzY DecoderI(Defuzzlfer)

I Plant

Output I

Action

Figure 1: The NFC Model for Intelligent Control

X
0

A

B i

INPUT

x 1 x

HIDDEN LAYER

13

Y
__ I

<Y 2 "x Y

/_Matrlxof weights on the arcs connecting

the inputlayerto the hldden layer

B:Matrixof welghts on the arcs connectlng

the Inputlayerto the output layer

C:Matrixof welghts on the arcs connecting

the hiddenlayerto the output layer

Figure 2: The Evaluation Network

(to be described bellow) are applied. The input from the environment is

provided to all hidden units and output units while an interconnection weight

exists at every intersection. Therefore in this network, hidden units receive

n + 1 inputs and have n + 1 weights each while the output units receive

n + 1 + mh inputs and have n + 1 + mh weights. If A, B, C are the matrices

of connection weights, then the output of the evaluation network is:

n tlrtA

,,[t,,t,]= E:b,[t,]=,[t,]+ _ _[_,]v,[_,,_,] (1)
i=1 i=1

wh_e

and

fg

v,[t,,t,] = g(_,,,j[t,]=j[t,]) (2)
$=1

1

g(') = 1 + c-, (3)

In the above equations, double time dependencies are used to avoid in-

stabilities in the updating of weights [2]. This network evaluates the action

recommended by the action network as a function of the failure signal and

0

D

INPUT

x I x n

HIDDEN LAYER

zI

F

I

Z

OUTPUT

Control action

I> -

D: Matrix of weights on the arcs connecting
the input layer to the hidden layer

E: Matrix of weights on the arcs connecting
the input layer to the output layer

F: Matrix of weights on the arcs connecting
the hidden layer to the output layer

Figure 3: The Action Selection Network

the change in state evaluation:

O if state at time t + 1 is a start state;
r[t + 1] - v[*, t] if state at time t+l is a failure state;

[t+l] = [rI + I] +Tv[t,t + I]- vlt, t] otherwise

(4)
The weights in this network are modified according to the followings:

b, It + 11 - b,[t] + fl_[t 4- 1]z,[t] (5)

c_[t + 11 = _[t] 4- fl$[t 4- 1]y,[t,t] (6)

a,j[t + 1] = alj[t] + flh#[t + lIY,[g, t](1 -- w[t,tl)_g,_(c_[t])z#] (7)

where 0 < 7 < 1 and fl, fit, > O.

2.2 Action Selection Network (ASN)

The Action Selection Network (ASN) includes a fuzzy controller which con-

sists of a fuzzifier, a rule base and decision making logic, and a defuzzifier all

represented in a network. The design of the rule base for this fuzzy controller

follows the algorithm developed in [5] which is based on a hierarchical process

considering the interaction of multiple goals.

In this paper, the above fuzzy controller is modeled by a two layered

neural network where the input layer includes the fuzzifier whose task is to

match the values of the input variables against the labels used in the fuzzy

control rules. The hidden layer in this network corresponds to the rules

used in the controller and includes the decision making logic. The output

layer includes the decoding (defuzzification) process. In the following, a brief

explanation on fuzzy logic control is provided. However, for more detailed

information, see [4]. The action selector is shown in Figure 3, where the

matrices of connection weights are D, E, and F. The individual member

of these matrices are labelled dij, e_, and ft. In this network, the hidden

nodes represent a fuzzy control rule in the following manner. The inputs to

the node are the preconditions of a rule and the output of the node is its

conclusion. We assume a Multi Input Single Output (MISO) control system.

The output layer combines the conclusion of the individual rules by using

the Center Of Area (COA) method [4] which is described below. Let w(i)

represent the degree that rule i is satisfied by the input state variables in X
which means

w(i) = Min{di,#il(zl), okz#i2(z2), ..., di,#i.(z,)} (S)

where #11 (zl) represents the degree of membership of the input zt in a fuzzy

set representing the label used in the first precondition of the rule i and n

is the number of inputs. Then m(1), which represents the result of applying

the w(i) on the conclusion of rule i, is calculated from

w(i)= (9)

where ge, represents the monotonic membership function of the label used

in the conclusion of rule i. The amount of the control action (i.e., u) is then

calculated by using the Center Of Area (COA) method as the following.

Assuming discretized membership functions, COA reveals

tt(t) = _i_ fl × re(i) x w(i) (10)

where mh is the number of nodes in the hidden layer which is equivalent to
the number of rules used in the model. We define two more functions here:

6

rt

z,[t]= 9(_ a,j[t]._[t])
./=1

n rnh

pit]= g(_ _,[tl_,[t]+ _ y,[tlz,[tl)
i=1 i=1

and

1, with probability p[t];q[t] = O, with probability 1 -p[t]

The connection weights are updated according to the followings:

(11)

(12)

(13)

ei[t + 1]= e,[t]+ p_'[t+ 1](q[t]- p[t])xi[t] (14)

fi[t + 1] - fi[t] + p_[t+ l](q[t]- p[t])zi[t] (15)

dq[t + 1]= dj[tl + phC'[t+ 1]z_[t](1- z_[t])_g,_(/,[t])(q[t]- v[tl)::j[tl (16)

where p and ph > 0.

3 Applying NFC to Cart-Pole Balancing

In this section, we describe the cart-pole balancing problem and apply the
NFC model to its control.

3.1 The Cart-Pole balancing problem

In this system a pole is hinged to a motor-driven cart which moves on rail

tracks to its right or its left. The pole has only one degree of freedom (rotation

about the hinge point). The primary control tasks are to keep the pole

vertically balanced and keep the cart within the rail tracks boundaries.

Four state variables are used to describe the system status, and one vari-

able represents the force applied to the cart. These are:

a: : horizontal position of the cart on the rail

: velocity of the cart

0 : angle of the pole with respect to the vertical line

: angular vdodty of pole

u : force applied to the cart.

We assume that a failure happens when I 0 [> 12 degrees or [z I> 2.4

meters. Also, we assume that the equations of motion of the cart-pole system

are not known to the controller and only a vector describing the cart-pole

system's state at each time step is known. In other words, the cart-pole

balancing system is treated as a black box by the learning system.

Figure 4 presents the model of NFC as it is applied to this problem.

Among the components of this model, we only describe the Action Selection
Network here.

3.2 The Action Selection Network

The action network was modeled by defining a multi-layered neural network

which receives reinforcements from the evaluation network. This network,

as shown in Figure 4, consists of 5 input nodes representing the four state

variables and a bias unit, 13 nodes in the hidden layer, and an output node.

The nodes in the hidden layer correspond to the fuzzy control rules. For

example, node ! corresponds to the rule:

IF 0 is Positive and 0 is Positive Then Force is Positive-Large.

As mentioned earlier, the rule base of a fuzzy controller consists of rules which

are described using linguistic variables. As shown in Figure 5(a) and Figure

5(b), three labels are used here to linguistically define the value of the state

variables: Positive (P), Zero (Z), and Negative (N). Seven labels are used

to linguistically define the value of force recommended by each control rule:

Positive Large (PL), Positive Medium (PM), Positive Small (PS), Zero (ZE),

Negative Small (NS), Negative Medium (NM), and Negative Large (NL).

The forward calculations in this network is based on fuzzy logic control as

described in [5], where nine fuzzy control rules were written for balandng

the pole vertically and four control rules were used in positioning the cart at

a spedfic location on the rail tracks. The presence of a connection between

8

xl

x2

I_ x3I

B

x4

XS, D I

I

Predict

updating weights

Input

State Fuzz1Ou,oO..O.nOlOecoOinOlOu,ou,I (Encoding) I DeclslonMaking Loglc (defuzzificatlon) Action

Figure 4: NFC applied to cart pole balancing

Negatlve Zero Posltlve

0 ÷

NL NM NS _E PS Pl'i PL

0 *

(a) (b)

Figure 5: (a)- Three qualitative levels for 0, 0, z, and _, (b)- Seven qualitative

levels for F

an input node j and a node i in the hidden layer indicates that the linguistic

value of the input corresponding to node i is used as a precondition in rule

i. As shown in Figure 4, the first nine rules, corresponding to the hidden

layer nodes 1 to 9, are rules with two preconditions (i.e., O, and 0). The rules

10 through 13 include four preconditions representing the linguistic values

of 0, O, z, and _. in this network, D represents the matrix of connection

weights between the input layer and the hidden layer, and F represents a
vector of connection weights between the hidden layer and the output node.

The amount of force applied to the cart is calculated using the equations (8)

to (10) as were given in the last section.

4 Relation to other research

Credit Assignment The evaluation network in our work is similar to the

Samuel's early work on credit assignment [10]. The Adaptive Heuristic Critic

(AHC) model of Barto et. al. [3] provides a more general approach to credit

assignment which learns by updating the predictions of failures. If no failure

signal is present, the internal reinforcement provided by AHC is just the

difference between the successive predictions of failure. Recently, Sutton [11]

has formalized this method as the Temporal Difference methods.

10

Anderson's.Multi-layer networks We use the same structure as pro-

posed by Anderson [2], however, the action selection network in our model

is based on fuzzy logic control. Using the structure of a fuzzy controller,

Anderson's approach is extended here to provide for the following attributes

in NFC.

• The continuous representation of the output value.

, The inclusion of the human expert operator's control rules in terms of

hidden units in the action selection network.

It should be noted that Anderson's goal in [1] was to discover the interesting

patterns and strategy learning schemes. Not much effort was spent on making

the process learn faster. In our work, although we allow some of the strategy

learning to happen automatically, we start from a knowledge base of fuzzy

control rules and fine-tune them as learning happens in the neural network.

Single Layer NeuroFuzzy Control Lee and Berenji [8] sad Lee [7] have

used a single layer neural network which requires the identification of the

trace functions for keeping track of the visited states and their evaluations.

The generation of these trace function is a difficult task in larger control

problems. However, the approach suggested in the current paper does not
use trace functions. The neural network representation of the fuzzy control

rules in NFC allows faster development sad faster learning. Also, in the

single layer model, only the generation of the output values were considered.

The preconditions of the fuzzy control rules were left untouched. However,

in NFC, based on reinforcements received from the environment, both the

preconditions and the conclusions of rules can be modified (i.e., fine-tuned).

5 Conclusion

A new model based on the reinforcement learning technique sad fuzzy logic

control was proposed which is applicable to control problems for which the

analytical models of the process are unknown. The NFC model presented

here improves the previous models in neurofuzzy control by learning to fine-

tune the performance of a fuzzy logic controller.

11

ACKNOWLEDGEMENT My thanks to Yung-Yaw Chen for many use-

ful discussions. Also, thanks to Charles Anderson for providing me with his

software for cart-pole balancing with multi-layer neural networks.

References

[1] C. W. Anderson. Learning and Problem Solving with MultiIayer Con-

nectionist Systems. PhD thesis, University of Massachusetts, 1986.

[2] C. W. Anderson. Strategy Learning with Multilayer Connectionist Rep-

resentation. Technical Report TR87-509.3, GTE Laboratories Inc., May
1988.

[3] A. G. Bazto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive

elements that can solve difficult learning control problems. IEEE Trans-

actions on Systems, Man, and Cybernetics, 13:834-846, 1983.

[4] R.E. Bellman and L.A. Zadeh. Fuzzy logic controllers. In L.A. Zadeh

Yager, It. B.., editor, An Introduction to Fuzzy Logic Applications in

Intelligent Systems, Kluwer Academic Publishers, (to appear).

[5] H.R. Berenji, Y.Y. Chen, C.C. Lee, J.S. Jang, and S. Murugesan. A hier-

archical approach to designing approximate reasoning-based controllers

for dynamic physical systems. In S_th Conference on Uncertainty in

Artificial Intelligence, pages 362-369, 1990.

[6] Y. Kasai and Y. Morimoto. Electronically controlled continuously vari-

able transmission. In Int. Gongt'ess on Transportation Electronics, Dear-

born, Michigan, 1988.

[7]

[8]

C.C. Lee. Self-learning rule-based controller employing approximate-

reasoning and neural-net concepts. Int. Journal of Intelligent Systems,
1990.

C.C. Lee and H.tt. Berenji. An intelligent controller based on approxi-

mate reasoning and reinforcement learning. In Proc. of IEEE Int. Sym-

posium on Intelligent Control, Albany, NY, 1989.

12

[9] T. J. Procyk and E. H. Mamdani. A linguistic self-organizing process

controller. Automatica, 15(1):15-30, 1979.

[10] A. L. Samuel. Some Studies in Machine Learning Using the Game of

Checkers. Journal of R & D, IBM, 1959.

[11] R.S. Sutton. Learning to predict by the methods of temporal differences.

Machine Learning, 3:9-44, 1988.

[12] S. Yasunobu and S. Miyamoto. Automatic Train operation by predictive

fuzzy control, pages 1-18. North-Holland, Amsterdam, 1985.

13

0

C .C

u.O '_ _5

._-_ _
cZ _
.__._ cc c

00_ m,_
'_" C: "_ Z
. .-

,,I,d

mm

a__

C

]4

m

| l | |

15

m

0

0

|m

"0 "

03 ,,,
_ I :_ (_0
m I m _ IIm

0
L.

D.
D.

,c:

.__ C

0 (1)

0
.c _)

m

0>',

16

17

18

g

01

mmI

0

I

I

0

I

f _ r

f

,-I

u
.,d
.mJ

I>

0

oi.
II

Q.
C

II

J

@
,-.I
0

Z

I

J

f

o

o o

T

T_

z

!

I

J

lg

2O

ll

"0

ll

.0 >

n

L._

°_CO

\

<z

L_

N 0 N
N U

O

\

L-

L.- "_

N _ _

_. I..LI v

21

22

23

o

24

C
|m

C
IL_

.J

"0

|m

Q.

2E
-I--

"0

o
"0
|m

I_.

.0

"r

N

v

¢n

N

W v

25

U)

0 ,,C

c-
iim

c_
0

iim

0

.,C

E
<1::

::3

0

m

>
I,U 0

im

t_
:3

m

t_

U,,I

,,i,- :3
|m

,,i,_ tt,,-

0
,,-,0
,,
E _

im

---'0

.i="

e_e_
0(1)

,<

0
e_
o

|m

C

(/)

(/)
t-
O

t.)

4)
m

(1)

0

..I

26

27

O

U

.J
CL

I

C_. N Z

O O

I

28

| |

29

